Banking Dynamics, Market Discipline and Capital Regulations

José-Víctor Ríos-Rull, University of Pennsylvania Tamon Takamura, Bank of Canada Yaz Terajima, Bank of Canada

2023 Bank Regulation Research Conference Columbia University SIPA and Bank Policy Institute March 1, 2023

The views expressed are my own and do not necessarily represent those of the Bank of Canada's Governing Council. The content is not related to the economic outlook or to monetary policy matters.

MOTIVATION

- Counter-Cyclical Capital Buffer (CCyB) is one of the Basel III capital requirements
 - > Address the pro-cyclicality of capital requirements and smooth bank credit supply over time
 - ▷ In Canada, Domestic Stability Buffer (DSB) works similarly to CCyB, applied to DSIBs Chart
 - $\circ~$ 2018: With the range of 0-2.5%, set at 1.5% with the total capital requirements of 13% of RWAs (and 11.5% if released)
 - $\circ~$ 2019-2021: Changed in the range of 1-2.5%
 - $\circ~$ 2022 December: Increased to 3% with the range expanded to 0-4%

MOTIVATION

- Counter-Cyclical Capital Buffer (CCyB) is one of the Basel III capital requirements
 - ▷ Address the pro-cyclicality of capital requirements and smooth bank credit supply over time
 - ▷ In Canada, Domestic Stability Buffer (DSB) works similarly to CCyB, applied to DSIBs Chart
 - $\circ~$ 2018: With the range of 0-2.5%, set at 1.5% with the total capital requirements of 13% of RWAs (and 11.5% if released)
 - $\circ~$ 2019-2021: Changed in the range of 1-2.5%
 - $\circ~$ 2022 December: Increased to 3% with the range expanded to 0-4%
- Basel III: Market discipline important and complement capital regulations
 - ▷ Facilitate the pricing of *individual* bank risk to limit "over-borrowing" from the wholesale market.

- 1. What is the impact of CCyB through a Great Financial Crisis-like episode:
 - Average impact on bank credit supply and insolvency?

• Differential policy impacts across banks with different capital ratios?

2. How does market discipline change the way banks react to CCyB? Heterogeneity?

- 1. What is the impact of CCyB through a Great Financial Crisis-like episode:
 - Average impact on bank credit supply and insolvency?
 - > Smoothes credit supply and bank default
 - ▷ Quantitatively, small impacts when releasing only 1.5% of CCyB
 - Differential policy impacts across banks with different capital ratios?

2. How does market discipline change the way banks react to CCyB? Heterogeneity?

- 1. What is the impact of CCyB through a Great Financial Crisis-like episode:
 - Average impact on bank credit supply and insolvency?
 - > Smoothes credit supply and bank default
 - ▷ Quantitatively, small impacts when releasing only 1.5% of CCyB
 - Differential policy impacts across banks with different capital ratios?
 - ▷ The impact varies across banks: larger impacts on low capitalized banks
- 2. How does market discipline change the way banks react to CCyB? Heterogeneity?

- 1. What is the impact of CCyB through a Great Financial Crisis-like episode:
 - Average impact on bank credit supply and insolvency?
 - > Smoothes credit supply and bank default
 - ▷ Quantitatively, small impacts when releasing only 1.5% of CCyB
 - Differential policy impacts across banks with different capital ratios?
 - ▷ The impact varies across banks: larger impacts on low capitalized banks
- 2. How does market discipline change the way banks react to CCyB? Heterogeneity?
 - ▷ Raises capital ratios in normal times (precautionary savings), softening the impact of crisis
 - ▷ Raises the liquidity risk; even large and well-capitalized banks could be vulnerable to crisis

A heterogeneous-bank model with

Timing of events

 $\triangleright\,$ stochastic aggregate state – normal and crisis

A heterogeneous-bank model with Timing of events

- $\triangleright\,$ stochastic aggregate state normal and crisis
- ▷ bank-specific loan failure rate shocks higher average failure rates in crisis

A heterogeneous-bank model with Timing of events

- $\triangleright\,$ stochastic aggregate state normal and crisis
- ▷ bank-specific loan failure rate shocks higher average failure rates in crisis
- ▷ endogenous bank default generates risk premium on bank's wholesale funding (WSF):

Discount price of WSF = $\frac{1 - Prob(default_{t+1})}{1 + r_t} \Rightarrow market discipline$ Pricing

A heterogeneous-bank model with Timing of events

- ▷ stochastic aggregate state normal and crisis
- ▷ bank-specific loan failure rate shocks higher average failure rates in crisis
- ▷ endogenous bank default generates risk premium on bank's wholesale funding (WSF):

Discount price of WSF = $\frac{1 - Prob(default_{t+1})}{1 + r_f} \Rightarrow market discipline$ Pricing

 \triangleright inefficiency from moral hazard due to limited liability and deposit insurance

A heterogeneous-bank model with Timing of events

- ▷ stochastic aggregate state normal and crisis
- ▷ bank-specific loan failure rate shocks higher average failure rates in crisis
- ▷ endogenous bank default generates risk premium on bank's wholesale funding (WSF):

Discount price of WSF = $\frac{1 - Prob(default_{t+1})}{1 + r_f} \Rightarrow market discipline Pricing$

inefficiency from moral hazard due to limited liability and deposit insurance
 the balance sheet:

ASSET	LIABILITY & EQUITY	
Long-Term Loan	Insured Deposit	
	Wholesale Funding	
	Equity	

A heterogeneous-bank model with Timing of events

- ▷ stochastic aggregate state normal and crisis
- ▷ bank-specific loan failure rate shocks higher average failure rates in crisis

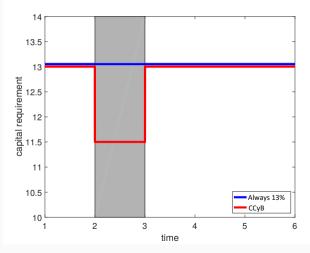
▷ endogenous bank default generates risk premium on bank's wholesale funding (WSF):

Discount price of WSF = $\frac{1 - Prob(default_{t+1})}{1 + r_t} \Rightarrow market discipline$

▷ inefficiency from moral hazard due to limited liability and deposit insurance
 ▷ the balance sheet:

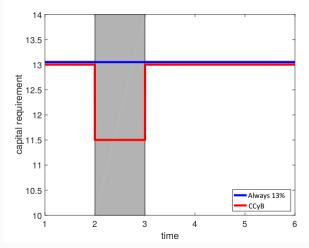
ASSET	LIABILITY & EQUITY	
Long-Term Loan	Insured Deposit	
	Wholesale Funding	
	Equity	

▷ banks must satisfy capital requirements, including CCyB


Pricing

STATIONARY STATE AND IRF ANALYSIS

 Calibrate to 2017 with 1.5-pp CCyB as a stationary economy in the normal time ⇒ starting point of simulation Distributions


STATIONARY STATE AND IRF ANALYSIS

- Calibrate to 2017 with 1.5-pp CCyB as a stationary economy in the normal time ⇒ starting point of simulation Distributions
- 2. Simulate aggregate dynamics and analyze Impulse-Response Functions (IRFs)
 - CCyB not released
 - CCyB released

STATIONARY STATE AND IRF ANALYSIS

- Calibrate to 2017 with 1.5-pp CCyB as a stationary economy in the normal time ⇒ starting point of simulation Distributions
- 2. Simulate aggregate dynamics and analyze Impulse-Response Functions (IRFs)
 - CCyB not released
 - CCyB released
 - Three bank groups in capital ratio
 - \circ Top decile
 - All banks
 - Bottom decile

	1.5pp ССуВ
	(Baseline)
Capital Requirement	13%
Average Capital Ratio	14.64%
Bank Insolvency Rate	0.12%
New Loans/Deposit	1.02

	1.5pp CCyB
	(Baseline)
Capital Requirement	13%
Average Capital Ratio	14.64%
Bank Insolvency Rate	0.12%
New Loans/Deposit	1.02

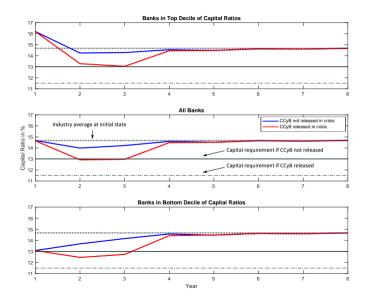
• Size of private capital buffer depends on precautionary motive and market discipline

	1.5pp ССуВ	1.5pp CCyB
	(Baseline)	(No Market Discipline)
Capital Requirement	13%	13%
Average Capital Ratio	14.64%	13.85%
Bank Insolvency Rate	0.12%	0.19%
New Loans/Deposit	1.02	1.06

• Size of private capital buffer depends on precautionary motive and market discipline

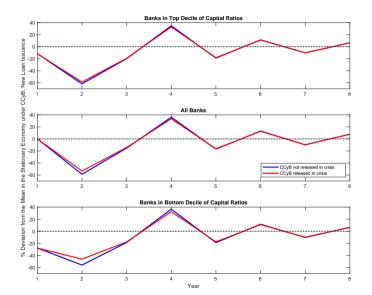
	1.5pp ССуВ	1.5pp CCyB
	(Baseline)	(No Market Discipline)
Capital Requirement	13%	13%
Average Capital Ratio	14.64%	13.85%
Bank Insolvency Rate	0.12%	0.19%
New Loans/Deposit	1.02	1.06

- Size of private capital buffer depends on precautionary motive and market discipline
- Market discipline makes banks more prudent and hold more capital in normal times

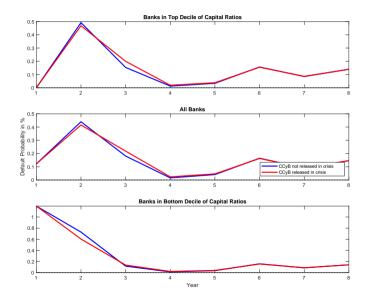

	1.5pp ССуВ	1.5pp CCyB
	(Baseline)	(No Market Discipline)
Capital Requirement	13%	13%
Average Capital Ratio	14.64%	13.85%
Bank Insolvency Rate	0.12%	0.19%
New Loans/Deposit	1.02	1.06

- Size of private capital buffer depends on precautionary motive and market discipline
- Market discipline makes banks more prudent and hold more capital in normal times
 complementing CCyB in normal times

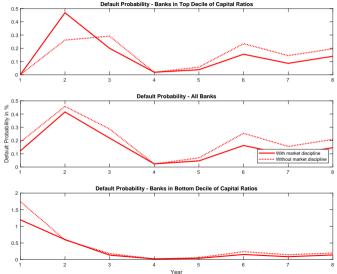
	1.5pp CCyB	1.5pp CCyB
	(Baseline)	(No Market Discipline)
Capital Requirement	13%	13%
Average Capital Ratio	14.64%	13.85%
Bank Insolvency Rate	0.12%	0.19%
New Loans/Deposit	1.02	1.06


- Size of private capital buffer depends on precautionary motive and market discipline
- $\bullet\,$ Market discipline makes banks more prudent and hold more capital in normal times
 - $\circ~$ complementing CCyB in normal times
 - $\circ~$ However, in crisis times, market discipline can amplify crisis shocks via higher risk premiums whereas CCyB dampens them

IRF of Capital Ratio with 1.5-pp CCyB ($13\% \rightarrow 11.5\%$)

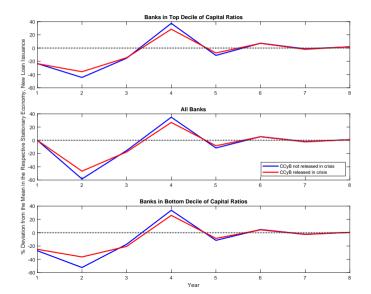

6

IRF of New Loan Issuance with 1.5-pp CCyB ($13\% \rightarrow 11.5\%$)



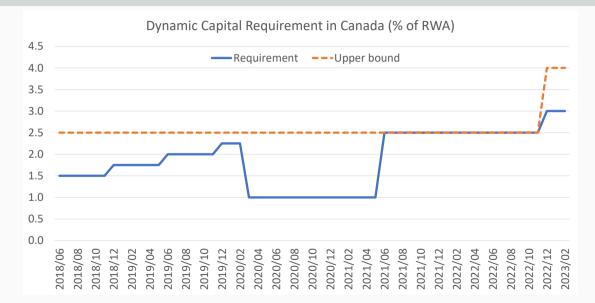
7

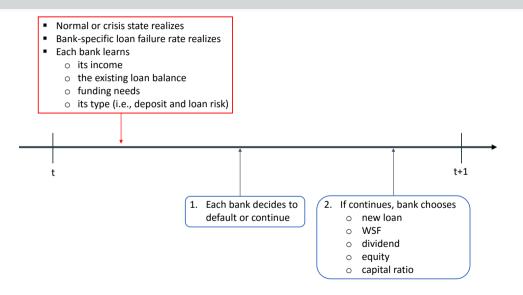
IRF of % of Bank Default with 1.5-pp CCyB ($13\% \rightarrow 11.5\%$)



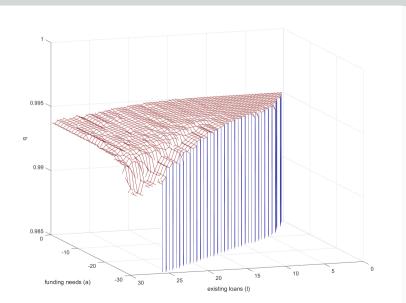
IRF OF BANK DEFAULT WITH AND W/O MARKET DISCIPLINE, 1.5-PP CCYB

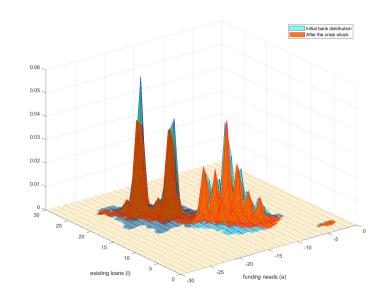
9


IRF of New Loan Issuance with 5-pp CCyB ($16.5\% \rightarrow 11.5\%$)


CONCLUSION

- 1. Confirms the intended benefits of CCyB over constant capital requirements:
 - $\,\triangleright\,$ Smoother credit supply and bank insolvency dynamics in a crisis-recovery episode
 - ▷ Average quantitative impact is limited at low levels of CCyB, but a larger impact on inadequately-capitalized banks
- 2. Market discipline has opposing effects on banks:
 - ▷ Lower bank risk-taking during normal times, *complementing CCyB*
 - softens the impact of the crisis on loan supply
 - reduces bank default on average
 - ▷ Larger liquidity risk during a crisis, working against CCyB
 - potentially increases default risk for even well-capitalized banks with large exposure on wholesale funding


HISTORY OF DYNAMICS CAPITAL REQUIREMENT IN CANADA Back


MODEL: TIMING OF SHOCKS AND DECISIONS (Back

DISCOUNT PRICE OF WSF FOR LARGE BANKS IN NORMAL TIMES (Back)

BANK DISTRIBUTIONS BEFORE AND AFTER THE CRISIS SHOCK (Back)

